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Overview

Timeline
B Project start data: January, 2007
B Project end data: December, 2010
B Percentage complete: 30%

Budget

B Total project funding:

— DOE: $5,434 K

— Contractor share: $172 K
B Funding received in FY'07:

— DOE: $1115K

— Contractor share: $35 K
B Funding for FY'08:

— DOE: $1400K

— Contractor share: $42 K

Barriers

® Barriers addressed
A. Durability
B. Cost
C. Electrode performance

Partners

M California Institute of Technology
(Caltech)

® University of lllinois at Chicago (UIC)

B University of Nevada at Las Vegas
(UNLV)

B Oak Ridge National Laboratory (ORNL)
B Los Alamos National Laboratory (LANL)

Lead Lab: Argonne




Objectives

®m Develop a non-platinum cathode electrocatalyst for polymer electrolyte
fuel cells to meet DOE targets that:

— Promotes the direct four-electron oxygen reduction reaction (ORR) with high
electrocatalytic activity
(0.44 A/mgpgy,; 720 pAlcm? @0.9 Vig froo)

O, reduction reaction (ORR) in acidic media
— Two-electron transfer Four-electron transfer
O, + 2H* + 2e~ = H,0, O, + 4H* +4e- =2 H,0

— Is chemically compatible with the acidic electrolyte and resistant to dissolution
(<40% electrochemical area loss over 5000 h@<80°C and 2000 h@>80°C)

— Is low cost ($5/KW, 0.3 mg PGM/cm?)

®m Objective in the past year:

— Synthesize and evaluate the oxygen reduction activity, stability, and electronic
structure of nano-particles of three palladium alloy systems (Pd-Cu, Pd-Ni,
and Pd-Fe)




Approach

® Bimetallic systems (base metal-noble metal)
— Surface segregation of minor noble metal component to form protective layer
— Base metal component chosen to modify electronic properties of noble metal
making it more “Pt-like”
— Initial choice of bimetallic systems based on published surface segregation

energies and d-band center shifts

[A.V. Ruban, H.L. Skriver, J.K. Ngrskov, Phys. Rev. B, 59 (1999)15990.; A. Ruban, B. Hammer, P. Stoltze, H.L.
Skriver, and J.K. Ngrskov, J. Mol. Catal. A 115 (1997) 421.]

— Examples: Bimetallics of palladium, iridium, and rhodium

m How this project addresses the technical barriers

— A. Durability: altering oxophilicity of catalyst to prevent oxidation-related

deg radation [J. Greeley and J.K. Narskov, “Electrochemical dissolution of surface

alloys in acids: Thermodynamic trends from first-principles
calculations”, Electrochim. Acta 52 (2007) 5829-5836.]

— B. Cost: lowering PGM loading by replacing PGM in electrocatalyst
particle core with base metal

— C. Electrode performance: modifying surface electronic properties to
enhance ORR activity
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Project tasks

B Computational studies (Caltech
— Guide choice of syétems an)d 2H, + O > 2H,0
Compositions ORR intermediates: H, O, OH, O,,00H, H,O
— Quantum mechanical and large scale
molecular dynamics for reaction
pathways, kinetics, and preferred
catalyst structures

B Model systems: bulk electrode fabrication
and characterization (UNLV, Argonne)
— Guide choice of systems and

compositions High dynamic range High resolution
P XPS, UPS, Auger, IPES XPS, UPS, Auger

B Nano-particle synthesis on high-surface-
area carbon support (Argonne, UIC)

B Nano-particle characterization (Argonne,
ORNL, UNLV, UIC)
— ORR activity, stability, composition,
electronic structure, and morphology

B Membrane-electrode assembly fabrication
and testing (LANL, ORNL) Scanning Prdbe
— Performance and durability using Microscope
accelerated test protocol




Energetics and reaction barriers for the two ORR mechanisms by
periodic quantum mechanical slab calculations

OOH Association Mechanism — Pt (111) surface, four atoms per layer, three layer slab
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Large scale molecular dynamics (ReaxFF) potentials are being
developed for PdCu alloys

Pd-metal equations of state

. am ReaxFF .
g . w = B ReaxFF gives a good
g« Y — description of Pd and PdCu-
5 o T T bulk structures
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PdCu-surface energies

B ReaxFF reproduces Pd and
PdCu surface energies as
determined by quantum
mechanical calculations
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Synthesis of nano-particle bimetallic carbon-supported
electrocatalysts

m Goals
— Achieve noble metal-base metal bimetallic core with noble metal skin
— Minimize particle size, maximize surface area/gram PGM
— Achieve uniform and controllable particle size and composition

m Techniques
— Impregnation (Argonne)
* Quick screening of noble metal-base metal ratio
* High temperatures needed to promote alloy formation
* Relatively large poly-disperse particles

— Single-Phase colloidal (Argonne)
* Small, relatively mono-disperse particles

— particle growth limited by presence of organic capping
molecules

» Alloys formed at low temperatures

— Strong electrostatic adsorption (UIC)
* Small particles with controllable particle size [ hhh.\
» Core-shell particles can be formed by tuning solution pH 0 a4 8 1 16 20

Particle size in nm




Summary of systems studied this year

Strong
Technique Impregnation Colloidal Electrostatic
Adsorption

System Pd Pd-Cu Pd-Ni Pd-Fe Pd Pd-Cu Pd Pd-Co

90:10

75:25 90:10 75:25 8:92
Composition 50:50 75:25 55:45 50:50 14:86
Pd:BM 100 40:60 50:50 50:50 100 25_'75 100 22:78
Molar Ratio 33:67 25:75 30:70 ' 36:64

25:75 10:90 10:90 53:47

10:90

VC
BP 2000
Carbon support | VC VC VC VC VC VC Ox. VC VC
Ox. BP
Pd Precursor Nitrate | Nitrate Nitrate Nitrate | Acetate | Acetate | Chloride ﬁ\i?:;r’::
BM Precursor Nitrate Nitrate | Nitrate Acetate Amlne Nitrate
nitrate
300, 400 400
Heat-treatment 800 450, 500 500 450, 500 | 300, 500/ 300, 400, | 200-800 | 200, 450
Temp. (°C) 550, 600 600 550, 620 550 |900, 550 500
800 700

Heat-treatment 3.7 3.7 3.7 3.7 3.7
atm. (H, %) 37 100 100 100 100 100 100 100
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Summary of ORR activity of Pd-Cu prepared by co-impregnation

Pd:Cu Molar Ratio
o 100 90:10 75225 50:50 25:75 10:90 B Pd:Cu ratio of 25:75 shows

L L the highest ORR activity per
-2 mg Pd

B Acid treatment enhances
4 - ORR activity of co-
impregnated 25:75 Pd:Cu

-8 Before acid After acid
treatment treatment

-10 1 | 0300°C B600°C m800°C

ix 0.9vvs. sHE (MA/mg Pd)
&

12 - L

14

ORR activity at 900 mV
(mA/mg Pd)

B Detailed description of these results are 16
shown in last year’'s annual review poster 18
(2007 AMR, FCP-28) 25:75 Pd:Cu/C by co-impregnation




Characterization of Pd-Cu catalyst with highest area-specific
ORR: acid-treated 25:75(Pd:Cu)-600°C

B ORR Pd mass activity increased by 30% with acid treatment; free copper removed
B Estimated specific ORR activity: 129 uA/cm? @ 900 mV

m 3.7 wt% Pd and 1.0 wt% Cu (68 mol% Pd:32 mol% Cu) (ICP-AES)

B Mean particle size of 21.5 + 7 nm (TEM)

® Pd,,Cug, fcc particle core with Pd-rich surface (XRD; XPS)

B Thin, oxidized Pd-rich layer on Pd,,Cu;, alloy core (XAFS)

TEM and XRD @ ORNL X-ray Absorption (XAFS)@ANL
Before acid XRD Before and After acid treatment ~ | | Tilm i Cu K edge -
treatment 8000 o

3 7000 | CuPd (111) CuPd‘(fOO) Cu‘(xzoo) _ 0.8
6000 | Pd (111) Pd (200)

i 0.6
5000 - i
4

4000 | -

Intensity (cps)

3000

o |\

1000 T

3 .
0 1 A Y 1 v LV -‘ 1_'5 é 2_'5 é B 5
ml 38 40 42 44 46 48 50 52
2-Theta

R (Angstroms, no phase correction)

0.2

Normalized Ix(R)I (Angstroms




The colloidal technique was used to form Pd-Cu alloys of
desired composition and to reduce particle size

Cu,Pd Cu,Pd

Pd: iicul C icu

Ll

Colloidal Impregnation
300°C 800°C

Colloidal, 300°C

Intensity

Colloidal technique provides complete
alloying at lower temperatures,
resulting in smaller particles, and
narrower distribution

Impregnated, 800°C

Impregnated, 600°C

30 40 50 60 70 80

2-theta
Technique, Nano-particle comp.-EDAX, Nano-particle size
nominal moles Pd: moles Cu (mol% Cu) (nm)
Colloidal, 50:50, 500°C 50.7+5.8 10.0+25
Colloidal, 25:75, 500°C 752129 7.0+1.0
Impregnated, 25:75, 800°C 67.5 + 8.9 55.0 = 14.5
Impregnated, 25:75, 600°C 475 £ 10.7 23.3 £ 8.3




ORR activity summary for Pd-Cu catalyst prepared by different
methods

E-Tek . E-Tek
20 wt% Pd Impregnated Colloidal Alt. Colloidal 2qwt.Pt

B Activity enhanced ~4x by

o N addition of Cu to Pd

: B Activity of ~75% of Pt/C
< 400 ﬁ 3 nm achieved (@ 0.8 V)
2 7 nm RDE, 0.1 M HCIO,, 12.5 ug PGM/cm? (Pt and Pd:Cu),
g) 28.6 ng Pd/cm? (Pd), GC area: 0.196 cm?, 1600 rpm, RT
< 800 21.5 nm
‘E; 0.0 { = 20% Pd/C
- ! [ 0.90 V

1200 | HMoss5y 3.3 nm < | = 25:75 Pd:Cu/C
: 00.80 V E 03] __ 2urpuc
| |5 —
1600 230M) £ g6 70 mV
o
Catalyst Eq2 (V)
0.9 1
Pd/C (20wt%, E - Tek) 0.768
Alt. Coll. Pd:Cu/C (25:75) 0.838 1.2 ‘ ‘ ‘ ‘ ‘
00 02 04 06 08 1.0
0 -
Pt/C (20wt%, E - Tek) 0.849 Potential (V vs. SHE)

A
Argonne ™



Cu modifies the valence band structure of Pd
valence band comparison

XPS
Al K(mono)

B Pd-Cu nanoparticles have strongly modified
valence band (VB) structure compared to Pd
and Cu

B Nano-particle preparation method effects VB
structure

B The spectra are dominated by Pd DOS
contributions close to the Fermi energy

| Pd-foil

B High Pd contribution to VB structure may be

indicative of a Pd-rich surface -_Alt. Coll.

Normalized Intensity

d-band center (occupied states):

Impreg. PdCu 1:3 2.3eV
Colloidal Pd:Cu 1:3 29¢eV
Alt. Coll. PdCu 1:3 3.7 eV
Pt foil 3.5eV

teeee
........

.............

Binding Energy (eV)




ORR activity of Pd-Ni varied with composition and heat treatment

conditions

B Samples prepared by co-impregnation and
post-deposition heat treatment

— Pd:Ni molar ratios from 90:10 to 10:90
— Temperature: 400 to 700°C
— Atmosphere: 100% H, or 3.7% H,

B Higher heat treatment temperature
enhanced the degree of alloying, but
increased particle size

B Higher degree of alloying occurred with a
lower level of Ni

B 100% H, reduction resulted in lower
degree of alloying and lower ORR activity
compared to 3.7% H,

B Highest ORR activity observed was
50:50 composition, heat-treated at
500°C in dilute hydrogen

Counts

2400 Pd Pd Pd Pd:Ni
Peo 10:90
~ B 25:75

1600 -

800 - l
A f 90:10
(essss “"““ﬁ_lm 100 Pd

30 40 50 60 70 80
2-Theta
700°C Pd to Ni molar ratio

071:0 91 31 1:1 1:-3, 1:9
mmyn Ty
=)
D 100
(o]
£
<
£ -200
X 0 0.90V ||
® 085V
3001 mogov -




ORR activity of Pd-Fe varied with composition and heat treatment

ik (mA/mg Pd)

ik (mA/mg Pd)

Pd to Fe molar ratio

75-25 55-45 50-50 30-70
0
-200
-400
-600 - Hm0.85V
0o.80V
-800
75-25 55-45 55-45 50-50 30-70
: 1Bl ‘r
-200 -
-400 | ]
0 0.90V
00.80V
620°C
-800 —

Samples prepared by co-impregnation and
post-deposition heat treatment in reducing
atmosphere

— Pd:Fe molar ratios from 75:25 to 30:70
— Temperature: 450-620°C
— Atmosphere: 100% H,or 3.7% H,

Low heat treatment temperatures:
Lower Pd:Fe ratios yielded the highest ORR
activity

High heat treatment temperatures.:
Higher Pd:Fe ratios yielded the highest ORR
activity

Highest ORR activity observed for 75:25
Pd:Fe heat-treated at 620°C




Strong electrostatic adsorption technique for synthesis of

core-shell bimetallic nano-particles (UIC) _
- + f + L

,T+I' + __|_
+ == -
+ i 2 I:;.-|-..-"!_- E
e [P @: Coo0 @
@ PZC= T-’ +
A B Impregnate shell metal & I+|
OH precursor at a pH between e
I« PZCs of support and core |+ + +C:J0: ;EJE P
v metal (or oxide) for _
S selective adsorption = ML}
O = [(NH)PY*”
3 B Reduce in hydrogen to
B Determine pH of : cebon Pt(NH,),” form carbon-supported
zero charge 24 Pd(NH,),” metal core/shell nano-
(PZC) for carbon ' ' particles

Y
1

support and core
metal or oxide

o

B Adsorb core metal
precursor, then
either reduce or
oxidize

Surface Potential, X 10*, mV

1
—
1 "

N
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Pd shell-Co core nano-particles have been formed by SEA (UIC)

B A continuous 2 nm thick Pd shell has been formed on a cobalt core
(EELS and EDAX)

B EELS scan across a particle B EDAX line scan across a particle

PdCo, /VXC
Reduced at 500C

2 [
bl
200D 5; : /
T 2500 o] 3 /
p il . S .
T: El:"}:"}' ...-' " : E f:\ i
B 150001 il = f
i e [ E "
B D - £l " — s " A - -
i, - =
L sone BE ST i g 10 i
S =
—zon 1 Line scan points across the diameter of the single
0,000 0002 0004 0.006  0.00E 001 bimetallic particle
|,|-

University of lllinois
at Chicago



Summary of ORR mass activity of Pd-based catalysts
compared to commercial catalysts

ik(mA/mg PGM)

Catalysts on Vulcan support
E-Tek (50:50)  (75:25)  (25:75) E-Tek

0. 20 wt% Pd Pd:Ni Pd:Fe Pd:Cu 20 wt% Pt
-200 - ‘
-400 3nm
600 14 nm
800 13 nm
1000
B0.90V
-1200 T EQ85V 3.3 nm
Lo.80V
-1400 -
2.3 nm
-1600

Up to 75% of Pt/C ORR activity achieved with PdCu

(~40% the cost of Pt for the same activity)




Kinetic parameters of Pd-based catalysts are similar to Pt’s

Vulcan- Tafel slope | % Conv. Number of electrons = 4.1+0.1

supported at>0.8 v to H,0, (from rotation rate dependence of current)
Catalyst (mVidec)

Pt 63.0 nd

Pd 62.0 <0.05 o

Pd:Cu 54.6+0.9 <0.06 o5

25:75 o :

Impreg. c:F) 0.90 \

Pd:Cu 59.6+£3.0 <0.06 $ 085 .

25:75 2 0.80

Alt. colloid 8 075

Pd:Ni 60.9+1.3 <0.05 8 070

50:50 T

Pd:Fe 66.3+2.4 <0.07 . S

75:25 107 10 105 10%  10% 102 10"

log (current)




Milestones/Summary of Progress

B Synthesize and evaluate the oxygen reduction reaction (ORR) activity and
stability of nano-particles of with goals of specific activity: 720 uA/cm?; mass
activity: 0.44 A/mg PGM (@900 mV g ¢.c)

— Milestone (12/07): three palladium alloy systemsv
— Milestone (09/08): one palladium alloy system (PdCo) and two rhodium
alloy systems (on-going)
B Progress:
— Highest room temperature ORR specific and mass activity observed:

» Estimated 129 uA/cm? (900 mV)
(Acid-treated Pd:Cu 25:75 by impregnation; 21.5 nm)

* 0.06 A/mg Pd (900 mV)
(Pd:Cu 25:75 by alternative colloidal; 3.3 nm)

— Synthesized and characterized a series of Pd-Cu, Pd-Ni, Pd-Fe via co-
impregnation; determined the effect of Pd to base metal ratio, post-
deposition heat treatment temperature and atmosphere, and acid treatment

— Developed colloidal technique for Pd-Cu; synthesized and characterized a
series of colloidal Pd-Cu catalysts




Summary of progress (cont.)

B Determined that Cu modifies the valence band density of states of Pd

B Developed strong electrostatic adsorption technique for Pd-Co and
achieved Co core-Pd shell structure

— Initial samples exhibited low ORR activity

B Determined effect of Pd particle size (1.2 to 20 nm) on ORR kinetics
— 5 nm particle size shows highest ORR mass activity

M Fabricated first model system series
— successive deposition of Pd on Cu at room temperature

B Calculated preferred reaction pathways and barriers for two possible O,
reduction reaction mechanisms on slabs of pure metals using DFT

— Dissociative mechanism through —OH formation

— Associative mechanism through —OOH formation
M Calculated ReaxFF potentials for Pd and PdCu




On-going and future work (FY’08 and FY’09)

B Computational analyses

— Determine energetics, including barriers, for dissociative and associative ORR mechanisms
on PdCu slabs

— Study surface segregation in PdCu alloy slabs (QM) and in nano-particles (ReaxFF)
— Investigate solvation and coverage effects for the ORR on Pd and PdCu alloys

— Fit ReaxFF to the cathode chemical reaction energies and perform simulations of cathode
reactions on PdCu nano-particles

B Model systems and nano-particle characterization

— Study effect of annealing, determine surface segregation, and measure ORR activity on
PdCu model system

— Prepare and characterize Pd on Ni, Pd on Fe, Cu on Pd, Ni on Pd, and Fe on Pd model
systems

— Perform depth-dependent electronic structure characterization using tunable synchrotron
radiation

B Nano-particle fabrication, activity and stability characterization
— Prepare significant quantities of most active PdCu catalyst for MEA testing
— Deposit Pd shell on PdCu alloys prepared by colloidal technique

— Develop colloidal technique for PdNi, PdFe, and PdCo alloys and SEA technique for PdNi,
PdFe, and PdCu

— Determine stability of all Pd alloys to potential cycling
— Characterize Rh-based alloys fabricated by co-impregnation
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